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Toric arrangements associated to graphs
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Department of Mathematics, Cornell University, Ithaca, NY 14853

Abstract. We study certain toric arrangements associated to graphs. The arrangement
depends on the choice of an integral lattice: we focus on the case of the (co)root lattice
of type A, but also comment on the (simpler) case of the (co)weight lattice of type A.
We obtain a combinatorial description for the intersection poset and derive several re-
sults on the characteristic polynomial and the arithmetic Tutte polynomial of the toric
arrangement. The former counts proper colorings that satisfy an additional divisibility
condition. By employing the Voronoi cell of the lattice, we show that the chambers of
certain toric arrangements may be seen as equivalence classes for a canonical equiv-
alence relation on the set of chambers of the corresponding linear arrangement. We
study this relation in the graphic case.

Keywords: Toric arrangement, root system, graphic arrangement, Tutte polynomial,
Voronoi cell, acyclic orientation

1 Introduction

We study arrangements of hypertori in a torus. Such an arrangement is associated to
a set of integral vectors with respect to a lattice. We set up the relevant notions in Sec-
tion 2. In Section 3 we discuss certain toric arrangements associated to a simple graph.
The (co)root and (co)weight lattices of type A furnish the other necessary ingredient.
The latter case exhibits a simpler behavior. We focus on the former for the most part.
Section 4 deals with the intersection poset. Our first result provides a combinatorial de-
scription for this poset. These are followed by results on the characteristic and arithmetic
Tutte polynomials in Section 5. They include an expression for the former in terms of
certain proper colorings, the introduction of the d-divisible Tutte polynomial, an expres-
sion for this polynomial in terms of activities, and a formula relating it to the arithmetic
Tutte polynomial. In Section 6 we introduce a canonical equivalence relation on the set
of chambers of a linear arrangement. This relation depends on the lattice and is defined
when the Voronoi cell is confined by the affine arrangement. We conclude by analyzing
this relation in the case of graphic arrangements in Section 7.

∗Aguiar supported in part by NSF grant DMS-140111.
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2 Toric arrangements

Let V be a real vector space of finite dimension d. Fix an inner product 〈·, ·〉 in V. For
each α 6= 0 in V, and each k ∈ R, let

Hα := {x ∈ V | 〈α, x〉 = 0} and Hα,k := {x ∈ V | 〈α, x〉 = k}.
Then Hα is a linear hyperplane in V, while Hα,k is an affine hyperplane in V. View V as an
abelian group under addition. Each linear hyperplane Hα is then a subgroup, and each
affine hyperplane Hα,k is a coset for this subgroup.

A lattice L in V is a subgroup of V generated by a basis of V. It is free abelian of
rank d. The associated d-dimensional torus is the quotient group T := V/L. A linear
hypertorus is a subgroup of V/L that is isomorphic to a (d− 1)-dimensional torus, and
an affine hypertorus is a coset in V/L of a linear hypertorus.

The dual lattice of L is L̂ := {α ∈ V | 〈α, λ〉 ∈ Z for all λ ∈ L}. It is a lattice in V.
A linear hyperplane H in V is L-integral if there is α ∈ L̂ such that H = Hα. Given a

hyperplane H in V, or more generally a subset H of V, let H denote the image of H in
V/L under the canonical projection. If H is an L-integral linear hyperplane in V, then H
is a linear hypertorus in V/L. It follows that for any coset H + x of H, its image H + x
is an affine hypertorus in V/L.

A vector α is L-integral if it belongs to L̂. Let Φ be a finite set of nonzero L-integral
vectors. To this data we associate two hyperplane arrangements in V, one linear and the
other affine:

A(Φ) := {Hα | α ∈ Φ} and Ã(Φ) := {Hα,k | α ∈ Φ, k ∈ Z}.
The associated toric arrangement in V/L is

A(Φ, L) := {Hα,k | α ∈ Φ, k ∈ Z}.
It consists of affine hypertori in V/L. Integrality guarantees that A(Φ, L) is finite. If Φ
generates V over R, the arrangement A(Φ) is essential. In this case, the minimal flats of
each arrangement are zero-dimensional.

Example 2.1. Let V = Rd with the standard inner product and let L = Zd. Any set of
nonzero vectors Φ ⊆ Zd = L̂ yields a toric arrangement in the standard torus V/L. 4
Example 2.2. Let Φ be a crystallographic root system in V [11, Section 1.2]. The root
lattice is ZΦ and its dual L = ẐΦ is the coweight lattice of Φ. Then Φ ⊆ L̂ and we
obtain a toric arrangement A(Φ, L) in V/L. 4
Example 2.3. Let Φ be as before, Φ∨ the set of coroots, and L = ZΦ∨, the coroot lattice
of Φ. Then L̂ is the weight lattice of Φ and the crystallographic assumption states that
Φ ⊆ L̂. Then A(Φ, L) is a toric arrangement in the Steinberg torus V/L of Φ. It is studied
in [1, 7]. 4
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3 Toric arrangements associated to a graph

Let {ei}1≤i≤n be the standard basis of Rn. For n ≥ 2, consider

An−1 := {ei − ej | 1 ≤ i 6= j ≤ n} and Vn := {(x1, . . . , xn) ∈ Rn | x1 + . . . + xn = 0}.
The former is a root system (of type A) and the latter is the subspace of Rn it spans.
Rn is endowed with the standard inner product and Vn with the induced one. For root
systems of type A, there is no distinction between roots and coroots, or between weights
and coweights.

Given a simple graph G with with vertex set V(G) = [n] and edge set E(G), consider
the subset ΦG of An−1 given by

ΦG := {ei − ej | {i, j} ∈ E(G)}.
There are three toric arrangements naturally associated to G, given by different choices
for the space V and the lattice L. (In all three cases, ΦG ⊆ L̂).

(i) V = Rn and L = Zn. Then A(ΦG, L) sits in the standard torus. This arrangement
is studied in [6, 8, 14].

(ii) V = Vn and L = ẐAn−1 = Z{ 1
n (e1 + . . . + en) − ei | 1 ≤ i ≤ n} the (co)weight

lattice of An−1. The arrangement A(ΦG, L) turns out to be the essentialization of
the arrangement in (i). With the exception of a few remarks (notably in Theorem 6),
we do not pursue its study in this note.

(iii) V = Vn and L = ZAn−1 the (co)root lattice of An−1. The arrangement A(ΦG, L)
sits in the Steinberg torus of An−1. This note focuses on combinatorial aspects of
this arrangement and the more general family of arrangements introduced next.

A weighted graph G = (G,wt) consists of a simple graph G with V(G) = [n] and a
weight function

wt : V(G)→ Z>0,

which associates a positive integer to each vertex of G. (These differ from the graphs in
[3, Section 9], which carry weighted edges.) Given such G , let

VG := {(x1, . . . , xn) ∈ Rn | wt(1)x1 + . . .wt(n)xn = 0},
〈x, y〉G := wt(1)x1y1 + . . . + wt(n)xnyn,

ΦG :=
{

ei

wt(i)
− ej

wt(j)

∣∣∣ {i, j} ∈ E(G )

}
,

LG := Z

{
wt(j)ei − wt(i)ej

gcd(wt(i),wt(j))

∣∣∣ 1 ≤ i 6= j ≤ n
}

.

The resulting toric arrangement A(ΦG , LG ) is studied in Section 5. When the weight of
every vertex is 1, this arrangement reduces to the one in (iii) above.
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Figure 1: (a) The positive roots of A2. (b) The affine arrangement of the complete
graph K3, with the linear arrangement in boldface. (c) The Steinberg torus of A2. Note
the identifications along the boundary. (d) The toric arrangement consists of 3 circles.
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Figure 2: (a) The affine arrangement of the complete graph K3 with weights wt(1) =

wt(2) = 1, wt(3) = 2. (b) The corresponding toric arrangement.

4 Intersection poset of toric graphic arrangements

Fix L and Φ as in Section 2. An affine flat is a nonempty intersection of affine hyperplanes
in Ã(Φ, L). A toric flat is the image of an affine flat in the torus V/L. Equivalently, a
toric flat is a connected component in a nonempty intersection of hypertori in A(Φ, L).
The intersection of two toric flats (in particular, two hypertori) is in general not a toric
flat, but instead a disjoint union of toric flats.

The intersection poset Π(Φ, L) is the set of all toric flats of A(Φ, L), ordered by inclu-
sion. The poset Π(Φ, L) is graded. When the arrangement is essential, the rank of a flat
is its topological dimension. There is a maximum element (the ambient torus T := V/L)
and several minimal elements (points when the arrangement is essential).
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T
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Figure 3: (a) The arrangementA(ΦK3 , ZA2), with flats distinguished by color. Any two
one-dimensional flats intersect in the same three points. (b) The intersection poset.

Let G be a simple graph. Consider the arrangement A(ΦG, ZAn−1) as in Section 3,
item (iii). We turn to a combinatorial description of its intersection poset.

For any partition π = {B1, . . . , Bk} of [n], let

gcd(π) := gcd{|Bi| | 1 ≤ i ≤ k}.
We order the partitions of [n] by refinement: π ≤ π′ if each block of π′ is contained in a
block of π. In this case, gcd(π′) divides gcd(π).

A partition π is a bond of G if the graph induced by G on each block of π is connected.
Let Π(G) be the set of pairs (π, t) where π is a bond of G and t ∈ Zgcd(π) is an integer
modulo gcd(π). This set is partially ordered by

(π, t) ≤ (π′, t′) if π ≤ π′ in Π(G) and t ≡ t′ mod gcd(π′).

When π′ refines π, gcd(π′) divides gcd(π), and hence t modulo gcd(π′) is well-defined.

Theorem 1. The poset Π(G) is the intersection poset of the toric arrangement A(ΦG, ZAn−1).

The correspondence is as follows. For any (π, t) ∈ Π(G), choose a block B of π, and
choose S1, S2 ⊆ B such that |S2| = t and B = S1 t S2. The pair (π, t) is identified with
the image of the affine flat determined by the equalities:

xi = xj if i, j belong to the same block of π and i, j /∈ B,

xi = xj if i, j ∈ S1 or i, j ∈ S2,

xi = xj + 1 if i ∈ S1 and j ∈ S2.

By contrast, the intersection poset of the standard arrangement of G (Section 3, item
(i)) is simply the poset of bonds of G [14].

There is a similar model for the poset of toric faces of A(ΦG, ZAn−1), which we do
not discuss in this note. When G is the complete graph, this recovers the model given
in [1, Section 4.3]. The combinatorial model for the toric flats of A(ΦK3 , ZA2) is shown
in Figure 4 and may be compared to [1, Figure 19].
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Figure 4: The flats of the arrangement A(ΦK3 , ZA2) with labels from Π(G).

5 Characteristic and Tutte polynomials

Fix L and Φ as in Section 2. The characteristic polynomial of A(Φ, L) is

χ(Φ, L; t) := ∑
X∈Π(Φ,L)

µ(X, T) tdim X,

where µ is the Möbius function of the intersection poset, T is the torus V/L, and dim X
is the dimension of the hypertorus X. Assume Φ spans V. A result of Zaslavsky [17,
Theorem 1.2] implies that (−1)dim Tχ(Φ, L; 0) is the number of chambers in A(Φ, L); see
also [8, 5, 12, 14].

The arithmetic Tutte polynomial of A(Φ, L), as defined by Moci [12], is

M(Φ, L; x, y) := ∑
A⊆Φ

m(A)(x− 1)dim(Φ)−dim(A)(y− 1)|A|−dim(A),

where m(A) is the number of toric flats of A(Φ, L) given as an intersection of the form⋂
α∈A Hα,kα

(kα ∈ Z), and dim(A) is the dimension of R-span of A. The characteristic
polynomial is a specialization of the arithmetic Tutte polynomial [12, Theorem 5.6]:

χ(Φ, L; t) = (−1)dim(Φ)tdim(T)−dim(Φ)M(Φ, L; 1− t, 0).

Consider now a weighted graph G = (G,wt) and the corresponding toric arrange-
ment A(ΦG , LG ), as in Section 3. We turn to a combinatorial description of the charac-
teristic polynomial of this arrangement, which we denote by χ(G ; t).

A proper divisible coloring of G with q colors is a function f : V(G)→ Zq such that

• f (i) 6= f (j) whenever i and j are adjacent in G;
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• ∑i∈V(G) wt(i) f (i) ≡ 0 mod q.

Write wt(G ) := wt(1) + . . . + wt(n) and gcd(wt) := gcd{wt(i) | i ∈ V(G )}.

Theorem 2. Let G be a weighted graph with wt(G ) = m. For any positive multiple q of m,

χ(G ; q) =
|{proper divisible coloring of G with q colors}|

gcd(wt)
.

This result may be derived with the aid of the toric finite field method [8, Theorem 3.7].
Let χ(G; t) denote the characteristic polynomial of A(ΦG, ZAn−1). Specializing The-

orem 2 to the case when all weights are 1, we see that χ(G; nt) counts proper divisible
colorings of G. The following explicit expressions are worth-mentioning: for the path Pn
and the star graph K1,n−1 (both on n vertices),

χ(Pn; t) = (−1)n−1 ∑
d|n

ϕ(d) (1− t)
n
d−1 , χ(K1,n−1; t) = (t− 1)n−1 + (−1)n−1(n− 1),

where ϕ is Euler’s totient function. Recall, by contrast, that Pn and K1,n−1, as well as any
other tree on n vertices, have the same ordinary Tutte polynomial.

Let Kn be the complete graph on n vertices. The following formula, known from [2,
Theorem 1.19], may also be derived from Theorem 2:

χ(Kn; t) = (−1)n−1(n− 1)! ∑
d|n

(−1)
n
d−1ϕ(d)

( t
d − 1
n
d − 1

)
.

Evaluating at 0 we see that the number of chambers in the Steinberg torusA(ΦKn , ZAn−1)
is n!, as known from [1, 7].

We turn to the arithmetic Tutte polynomial of A(ΦG , LG ), denoted M(G ; x, y).
Given d ∈ Z>0 and a subgraph H of G, we say that H is d-divisible if the sum of the

weights of the vertices in each connected component of H is divisible by d. We define
the d-divisible Tutte polynomial of G as

Td(G ; x, y) := ∑
H d-divisible

(x− 1)k(H)−k(G)(y− 1)|H|+k(H)−|V(G)|.

The sum is over the d-divisible subgraphs of G and k(H) is the number of connected
components of H. When d and all weights are 1,Td is the ordinaryTutte polynomial of G.

Theorem 3. Let G be a weighted graph with wt(G ) = m. Then

M(G ; x, y) =
1

gcd(wt) ∑
d|m

ϕ(d) Td(G ; x, y).
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By contrast, the arithmetic Tutte polynomial of the standard arrangement of G (Sec-
tion 3, item (i)) is simply the Tutte polynomial of G [8].

In the special case when all weights are 1, Theorem 3 may be derived from either
Theorem 1 or [2, Lemma 4.12].

Recall that the ordinary Tutte polynomial admits an expression in terms of activities.
There exists an analogous result for the arithmetic Tutte polynomial due to D’Adderio
and Moci [4]. We turn to a similar statement for the polynomial Td(G ; x, y).

Fix a positive integer d and a total order on E(G). Let F be a spanning forest of G.
An edge e ∈ E(G) \ F is externally active with respect to F if e is the smallest edge in
the unique cycle of F ∪ {e}. (This is the standard notion.) We say that an edge e ∈ F
is d-internally active with respect to F if F \ {e} is d-divisible and e is the smallest edge
in the cut defined by e. (When d = 1, this is the standard notion of internal activity.)
The external activity of F, denoted by ex(F), is the number of externally active edges with
respect to F. The d-internal activity of F, denoted by ind(F), is the number of d-internally
active edges with respect to F. Let SFd(G ) denotes the set of spanning forests of G that
are d-divisible.

Theorem 4. Let G be a weighted graph and let d be a positive integer. Then

Td(G ; x, y) = ∑
F∈SFd(G )

xind(F)yex(F).

Our proof of Theorem 4 uses a deletion-contraction recurrence for divisible Tutte poly-
nomials, which we do not describe in this note.

The following formulas may be derived as applications of Theorems 3 and 4 (Pn is
the path, K1,n−1 the star, Cn the cycle, and all weights are 1).

M(Pn; x, y) = ∑
d|n

ϕ(d) x
n
d−1,

M(K1,n−1; x, y) = xn−1 + n− 1,

M(Cn; x, y) = ∑
d|n

d ϕ(d)

(
x

n
d − 1

x− 1
+

y− 1
d

)
.

6 Voronoi equivalence

Let Φ and L be as in Section 2. We show that the chambers of certain toric arrangements
A(Φ, L) may be seen as equivalence classes for a canonical equivalence relation on the
set of chambers of the linear arrangement A(Φ).

The Voronoi cell (at the origin) of L is the polytope

Vor(L) := {x ∈ V | |x| ≤ |x− λ| for all λ ∈ L}.
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It is a fundamental domain for the action of L on V by translations, so the torus V/L
may be realized as a quotient of Vor(L) in which boundary points are glued modulo L.

All hyperplanes in the linear arrangement A(Φ) intersect the interior of Vor(L). We
say that L is confined by Φ if no other hyperplane in the affine arrangement Ã(Φ) inter-
sects the interior of Vor(L).

◦
◦

◦

◦

◦
◦

• •

◦

◦
◦

◦
(a) (b)

Figure 5: The lattice L (circles), its Voronoi cell Vor(L) (in blue), and the affine ar-
rangement Ã(Φ) (lines) for two choices of L and Φ, one confined, the other not. (a)
Φ = ΦP3 and L = ZA2. (b) Φ = ΦG for G the complete graph K3 with weights
wt(1) = wt(2) = 1, wt(3) = 2, and L = LG .

Assume that L is confined by Φ. Note that Vor(L) is divided into regions by A(Φ),
one for each chamber of A(Φ). As L is confined by Φ and Vor(L) is a fundamental
domain of the torus V/L, each of this region belongs to a toric chamber of A(Φ, L).
We say that two linear chambers are Voronoi equivalent if the corresponding regions in
Vor(L) belong to the same toric chamber. This defines an equivalence relation on the set
of linear chambers of A(Φ), which we call Voronoi equivalence. By construction, Voronoi
equivalence classes correspond to chambers of A(Φ, L). Figure 6 illustrates the situation
for the toric arrangement A(ΦP3 , ZA2) of the path P3.

• •

(a) (b)

Figure 6: (a) Toric arrangement and Voronoi cell. (b) Linear arrangement. The two
chambers with the same pattern are Voronoi equivalent.

Proposition 5. When Φ is a crystallographic root system, both the coroot lattice ZΦ∨ and the
coweight lattice ẐΦ are confined by Φ.

The proof relies on the observation that the Voronoi cell of ZΦ∨ is the largest confined
neighborhood of the origin.
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7 Voronoi equivalence for toric graphic arrangements

We turn to the study of Voronoi equivalence for the toric arrangements A(ΦG, ẐAn−1)
and A(ΦG, ZAn−1) of Section 3. Confinement of its Voronoi cell follows from Proposi-
tion 5. In each case, Voronoi equivalence is a relation on the set Cham(G) of chambers
of the linear arrangement A(ΦG).

We assume throughout this section that G is connected. This guarantees that ΦG
spans and that A(ΦG) is essential. With minor adjustments, the results that follow can
be extended to all simple graphs.

The set Cham(G) is in bijection with the set Acyc(G) of acyclic orientations of G
by the following correspondence [10]: an orientation O ∈ Acyc(G) is associated to the
chamber C = {x ∈ V | xi < xj if i→ j in O}. Through this correspondence, Voronoi
equivalence is a relation on the set Acyc(G).

For the coweight lattice, Voronoi equivalence turns out to be a familiar relation. A
source-to-sink flip is an operation that turns an acyclic orientation O into another O′ by
choosing a source vertex i in O, and then changing the orientation in O of all edges
incident to i. Then i is a sink vertex in the new orientation O′. See Figure 7 (a).

•

◦

◦

◦
→

•

◦

◦

◦

•

•

◦

◦
↔

•

•

◦

◦

(a) (b)

Figure 7: (a) A source-to-sink flip. (b) A source-sink exchange.

Theorem 6. Let L = ẐAn−1. Two orientations in Acyc(G) are Voronoi equivalent if and only
if they are related by a sequence of source-to sink flips.

This relation arose in [13] and [15], and has been studied extensively for its connec-
tion to chip-firing and conjugacy of Coxeter elements [9, 16]. The fact that equivalence
classes correspond to toric chambers of the standard arrangement A(ΦG, Zn) is due to
[6, Theorem 1.4]. (Recall A(ΦG, ẐAn−1) is its essentialization.)

For the coroot lattice, Voronoi equivalence appears to be a new and perhaps equally
interesting relation. It possesses several combinatorial descriptions which we discuss
next.

A source-sink exchange is an operation that transforms an acyclic orientation O into
another O′ by choosing a source vertex i and a non-adjacent sink vertex j of O, and then
changing the orientation of all edges in O that are incident to either i or j. Then i is a
sink vertex and j is a source vertex in the new orientation O′. See Figure 7 (b).

Theorem 7. Let L = ZAn−1. For O1,O2 ∈ Acyc(G), the following are equivalent:
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(i) O1 and O2 are Voronoi equivalent.

(ii) O1 and O2 are related by a sequence of source-sink exchanges.

(iii) O1 and O2 are related by a sequence of source-to-sink flips of length divisible by n.

(iv) There exists O3 ∈ Acyc(G) such that O1 and O2 are related to O3 by a sequence of
source-to-sink flips of the same length.

◦

◦

◦

◦
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

1 class under source-to-sink flip 4 classes under source-sink exchange

Figure 8: Comparison between two Voronoi equivalences.

There is also an interesting description of this relation in terms of modular flows on G.
As a consequence, one has the following explicit calculations. The path with n vertices
has n coroot Voronoi equivalence classes, and the i-th class has cardinality

1
2
|{S ⊆ [n] | ∑

x∈S
x ≡ i mod n}|.

The cycle with n vertices has n(n− 1) coroot Voronoi equivalence classes, and the (i, j)-th
class has cardinality

|{S ⊆ [n] | |S| = i, ∑
x∈S

x ≡ j mod n}|.
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